cwm.co.kr [Manual] J. R. Barber - Elasticity, Solution Manual > cwm1 | cwm.co.kr report

[Manual] J. R. Barber - Elasticity, Solution Manual > cwm1

본문 바로가기

뒤로가기 cwm1

[Manual] J. R. Barber - Elasticity, Solution Manual

페이지 정보

작성일 19-11-15 19:29

본문




Download : J R Barber Elasticity Solution Manual.pdf





J%20R%20Barber%20%20Elasticity%20Solution%20Manual_pdf_01.gif J%20R%20Barber%20%20Elasticity%20Solution%20Manual_pdf_02.gif J%20R%20Barber%20%20Elasticity%20Solution%20Manual_pdf_03.gif J%20R%20Barber%20%20Elasticity%20Solution%20Manual_pdf_04.gif J%20R%20Barber%20%20Elasticity%20Solution%20Manual_pdf_05.gif J%20R%20Barber%20%20Elasticity%20Solution%20Manual_pdf_06.gif


솔루션,기타,솔루션


Download : J R Barber Elasticity Solution Manual.pdf( 16 )


순서
[Manual] J. R. Barber - Elasticity, Solution Manual , [Manual] J. R. Barber - Elasticity, Solution Manual기타솔루션 , 솔루션


설명



솔루션/기타
[Manual] J. R. Barber - Elasticity, Solution Manual
[Manual] J. R. Barber - Elasticity, Solution Manual








CHAPTER 1
1.1. Show that (i) √ ∂xi = δij and (ii) R = xi xi , ∂xj

where R = |R| is the distance from the origin. Hence nd ∂R/∂xj in index notation. Conrm your result by nding ∂R/∂x in x, y, z notation. For an orthogonal co¨rdinate system, o ∂x =0 ∂y (this is what is meant by orthogonality) and ∂x =1. ∂x In index notation, these results can be combined as ∂xi = δij . ∂xj The distance from the origin is R= x2 + x2 + x2 = 1 2 3 √ xi xi .

Combining these results, we have 1 ∂ √ ∂xi ∂xi xi xi =

CHAPTER 1
1.1. Show that (i) √ ∂xi = δij and (ii) R = xi xi , ∂xj

where R = |R| is the distance from the origin. Hence nd ∂R/∂xj in index notation. Conrm your result by nding ∂R/∂x in x, y, z notation. For an orthogonal co¨rdinate system, o ∂x =0 ∂y (this is what is meant by orthogonality) and ∂x =1. ∂x In index notation, these results can be c…(drop)
다.
전체 22,854건 1 페이지
해당자료의 저작권은 각 업로더에게 있습니다.

evga.co.kr 은 통신판매중개자이며 통신판매의 당사자가 아닙니다.
따라서 상품·거래정보 및 거래에 대하여 책임을 지지 않습니다.
Copyright © cwm.co.kr. All rights reserved.
PC 버전으로 보기